If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x+x^2=8
We move all terms to the left:
4x+x^2-(8)=0
a = 1; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·1·(-8)
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{3}}{2*1}=\frac{-4-4\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{3}}{2*1}=\frac{-4+4\sqrt{3}}{2} $
| 4.5x+25=5.5x+10 | | 1200w+50=2500 | | v+26=60 | | X+2(3x-8)=7-16 | | 1200w-50=2500 | | 63=y-9 | | 4x+8×.8=40 | | 50w+1200=2500 | | −39=-43+y/11 | | 12=j-67 | | 0.789=200/x | | 1/2x+5=x-4/5 | | B2H5x=T3KE4RY | | (y/3)+4=25 | | -9y+35=4(y-1) | | 32+8u=12u | | 1/33+2/3x=5/6 | | Y=50+0,6(Y-50)+20+50+0,2Y^f-0,2Y | | 4w-32=w+7w-2w | | √25x^2=100 | | 0.08(y-8)+0.10y=0.02y-1.8 | | 13p-12=4p+33 | | 6(4-2x)=-24 | | x/16=12/32 | | 8+5u=–u−10+8u | | 3x-9+5x=39 | | 9x+3=-6+7x+25 | | 2x–1=5x+8 | | 1/2+7=3/4x-3/8 | | -8(x-2)-27=-1 | | -x+0,5=-0,4 | | -7+m/5=8 |